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A linear stability analysis of a shear flow in the presence of a continuous but steep
variation of viscosity between two layers of nearly uniform viscosity is presented.
This instability is investigated in relation to the known interfacial instability for the
parallel flow of two superposed fluids of different viscosity. With respect to this
configuration, the stability of our problem depends on two new parameters: the
interface thickness δ and the Péclet number Pe, which accounts for diffusion effects
when viscosity perturbations, coupled to the velocity perturbations, are allowed. We
show that instability still exists for the continuous viscosity profile, provided the
thickness of the interface is small enough and Pe sufficiently large. Small and large
wavenumbers are found to be stable, at variance with the discontinuous configuration.
Of particular interest is also the possibility of obtaining higher growth rates than in
the discontinuous case for suitable Pe and δ ranges.

1. Introduction
Hydrodynamical shear instabilities in the presence of continuous viscosity

stratification are widely encountered, for instance in many chemical engineering
processes (like polymer extrusion or separation processes like filtration). Viscosity
stratification is present in a flow when different fluids or temperature or concentration
gradients are involved. Most fundamental studies have considered specifically the
stability of channel flow in the presence of heating at the walls. In their comprehensive
review, Wall & Wilson (1996) report in particular how the stability of plane Poiseuille
flow is modified by temperature for four viscosity models. They found that viscosity
stratification can have a significant influence on the stability of the flow. When
the applied temperature gradient leads to a non-uniform increase of the viscosity
everywhere in the channel, the flow is stabilized; if however it leads to a non-uniform
decrease, the flow is either stabilized or destabilized. They highlight three main effects
to explain this behaviour: a bulk effect due to the uniform increase or decrease of
viscosity, a velocity-profile shape effect as the basic-state velocity profile becomes
non-symmetrical, and a thin-layer effect when a thin layer of lower or higher viscosity
develops adjacent to a channel wall. They also find that the stability of the flow
is only weakly dependent on the value of the Péclet number Pe, which compares
inertial and thermal diffusive effects. A companion paper (Wall & Wilson 1997)
is devoted to boundary-layer flow stability over a heated or cooled plate. For the
viscosity models considered, they find that when the applied temperature leads to a
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non-uniform decrease (increase) of the viscosity towards the plate, the flow is stabilized
(destabilized), a behaviour enhanced when the Prandtl number, which compares
viscous and thermal diffusive effects, is increased. Ranganathan & Govindarajan
(2001) also consider the high-Reynolds-number stability of plane channel flow but in
the case of two fluids of different viscosities with a mixed layer in between. Unlike
Wall & Wilson (1996, 1997), their analysis neglects any disturbance to the viscosity
distribution; in order to be able to do so they assume Pe = 0 as far as perturbations are
concerned, disregarding the fact that, if Pe = 0, the base flow diffuses instantaneously
and therefore cannot retain the assumed viscosity stratification. In the context of non-
Newtonian fluids and in the absence of diffusion effects (Pe = ∞), Wilson & Rallison
(1999) have investigated the stability of elastic liquids having continuously stratified
constitutive properties, in connection with the two-fluid co-extrusion instability that
arises when elasticity varies discontinuously. They found that an Oldroyd-B fluid
having a sufficiently rapid normal-stress variation is unstable. As a modified White–
Metzner fluid having identical velocity and stress profiles is stable, they pointed out
that Lagrangian convection of material properties (either polymer concentration or
relaxation time) appears as a crucial ingredient of their instability.

In parallel to a continuous viscosity stratification, the case of discontinuous
stratification has also sparked much interest. Indeed, when two superposed immiscible
fluids of constant viscosity are sheared, an interfacial mode of instability arises
depending on the thickness and viscosity ratio between the fluid layers and on the
surface tension and gravity effects. Two major features of this instability are that it
is triggered by an inertial effect, however small it may be, and that short as well
as long wavelengths may become unstable (Yih 1967; Hooper & Boyd 1983). The
mechanisms of instability for these wavelengths have been identified by Hinch (1984)
and Charru & Hinch (2000). An interesting property is that when the thinner layer
is the more viscous, the flow is unstable, whereas it is stable otherwise. In particular,
a Couette-type shear flow in the presence of a thin and more viscous layer is known
to be unstable and is well-documented. For instance, Albert & Charru (2000) provide
the stability diagram in the plane of the parameters m and d , which respectively
denote the viscosity and thickness ratio between the fluid layers, in the absence of
surface tension and gravity effects. Throughout the present paper, this configuration
will be termed ‘the discontinuous case’, as the viscosity and hence the slope of the
velocity profile are discontinuous at the interface. Our concern in this work is with the
existence and the characteristics of this interfacial mode of instability in the presence
of a continuous stratification of viscosity.

The shear instability of a flow having a continuous and locally strong stratification
of viscosity is relevant to some experiments with miscible fluids and resuspension
flows. Several experiments have been devoted to the dynamics of miscible fluids
displacing each other in pipes. When a less viscous fluid displaces a more viscous
fluid in a tube, a fingering instability is known to occur (Petitjeans & Maxworthy
1996). The more viscous fluid is not totally displaced: it leaves a thin layer on the
pipe wall that surrounds the finger as it travels. For certain flow rates and viscosity
ratios, Scoffoni, Lajeunesse & Homsy (2001) reported that the finger shape exhibits
a periodic axisymmetric or non-axisymmetric pattern. The Péclet number, Pe, of
their experiment is large and the fluids appear to be well separated; thus, to explain
their observations, they draw an analogy with the core–annular instability known to
occur between immiscible fluids (Bai, Chen & Joseph 1992 and companion papers).
The converse situation of a more viscous fluid displacing a less viscous fluid in a
cylindrical tube was studied recently by Balasubramaniam, Rashidnia & Maxworthy
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(2001). In this case too, not only fingering was observed to occur, but under certain
conditions the advancing finger was observed to describe a sinuous pattern, as
also happens for immiscible fluids (Joseph & Renardy 1993). However, though the
discontinuous immiscible-fluid interfacial instability is a good candidate to explain
these observations, the effect of diffusion on this instability, even at large Pe, and of
a blurred interface, in which viscosity varies sharply but continuously, is unknown.
These questions also arise in the case of resuspension flows. When a bed of small
particles settled by gravity is sheared by the fluid flow, non-uniformities in the height
of the bed and ripple growth have been observed to occur, hinting at the presence
of instabilities (Schaflinger, Acrivos & Stibi 1995). The concentration profile in the
resuspended layer may be obtained by balancing sedimentation due to gravity and
particle diffusion due to the concentration gradient (Schaflinger, Acrivos & Zhang
1990; Leighton & Acrivos 1986). Since the resulting particle concentration in the
flowing suspension is almost uniform except within a thin transition layer underneath
the clear fluid, Zhang, Acrivos & Schaflinger (1992) performed a stability analysis
of the problem by considering the suspension to have uniform physical properties.
A question then arises about the effect on this instability of taking into account
not only the real continuous variation of the concentration, and in particular the
existence of a transition layer, but also the existence of concentration perturbations
subject to diffusion, just as the base flow. In a first attempt to clarify these points, the
purpose of the present paper is to characterize the effect of diffusion and of a blurred
interface upon the interfacial mode of instability, known to exist at the interface
between two superposed constant-viscosity fluids subject to shear. As detailed in the
next section, the linear stability problem is then governed by two coupled equations:
an Orr–Sommerfeld equation (momentum and mass conservation equations) with
additional terms due to the continuous variation of the base flow viscosity and to
the existence of viscosity perturbations, and a transport-diffusion equation governing
temperature or concentration perturbations, together with a constitutive equation for
viscosity versus temperature or concentration.

2. Governing equations
2.1. Base flow

We consider a base flow of constant density ρ and continuously varying viscosity
µB . The coordinate x denotes the direction parallel and y perpendicular to the walls,
which are located at y = 0 and y = h1 + h2. As shown on figure 1(a), the base flow
viscosity µB is assumed to vary according to the law

µB(y) = µi + �µ tanh

(
2

δ

(
y

h1

− 1

))
(2.1)

with µi =
µ1 + µ2

2
and �µ =

µ2 − µ1

2
.

The dimensionless parameter δ is the representative thickness of the smoothed mixing
layer around y = h1 where most of the adjustment between the values µ1 and µ2

takes place. In the limit δ → 0, the discontinuous case is recovered with µB = µ1

in a layer of thickness h1 and µB = µ2 in a layer of thickness h2. A zero pressure
gradient is assumed and the corresponding base flow velocity (UB(y), 0) is given by
the momentum conservation equation

d

dy

(
µB(y)

dUB

dy

)
= 0 (2.2)
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Figure 1. Base flow profiles of (a) the viscosity and (b) the velocity, for different values of δ,
the mixing layer thickness: δ = 0.2 (more rounded profile), δ = 0.1 (dashed line) and δ = 0.002
(sharper profile) (µ2/µ1 = 0.25, h2/h1 = 4).

with boundary conditions UB(0) = 0 and UB(h1) = Ui . This equation is solved
numerically and typical profiles of this Couette-type flow are shown in figure 1(b).
For the purpose of non-dimensionalization, we choose as reference scales those of the
thinner and more viscous layer identified by the subscript 1: h1 as the length scale,
µ1 as the reference viscosity and Ui = UB(h1) as the velocity scale. The Reynolds
number Re and the Péclet number Pe then are

Re =
ρUih1

µ1

and Pe =
Uih1

D
,

where D is a constant diffusion coefficient. We also define the parameters

d =
h2

h1

and m =
µ2

µ1

and denote the non-dimensional base-flow velocity and viscosity as

U (y) =
UB

Ui

and N (y) =
µB

µ1

.
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The viscosity µ is assumed to depend on an intensive quantity Φ , for instance a
concentration or a temperature, which follows a transport-diffusion equation. For the
sake of simplicity, we assume that the dependence of the viscosity on this quantity is
linear in the required range

µ(Φ) = λ0Φ + µ0, (2.3)

λ0 and µ0 being constants, which will turn out to disappear in the stability equations.
Note that Einstein’s law for dilute suspensions corresponds to the case λ0 = (5/2) µ0.
The viscosity perturbation is then proportional to the Φ perturbation and follows the
same transport-diffusion equation with velocity U and constant diffusion coefficient
D:

∂µ

∂t
+ (U · ∇)µ = ∇ · (D∇µ), (2.4)

where ∇ is a gradient operator. It can be noticed that equation (2.4) is satisfied
whatever the law µ(Φ) when Pe= ∞ (D =0), the viscosity becoming just a convectively
transported scalar quantity. It should also be noted that the unperturbed base-flow
viscosity profile (2.1) satisfies the above equation as a steady solution in the limit
of zero diffusion only, Pe= ∞. As Pe � 1 and Re is finite in the cases studied here,
we shall assume diffusion to be negligible as far as the base flow is concerned. This
assumption becomes unacceptable if the growth rate of the disturbances is slower
than the rate of change of the base state, that is, if the time scale of the disturbance
growth is larger than the diffusion time scale of the interface thickness, Pe δ2. The
limitations entailed by this condition will be discussed in more detail in § 3.5.

2.2. Stability equations

The linear stability analysis of the base flow (U (y), 0) associated with the base
viscosity N (y) is performed by introducing in the Navier–Stokes, continuity and
viscosity transport-diffusion equations the velocity perturbations (u(y), v(y))ei(αx−ωt)

and the viscosity perturbation n(y)ei(αx−ωt), α being a dimensionless wavenumber and
ω a dimensionless frequency. After linearization, these equations may then be recast in
a similar form as in Wall & Wilson (1996), namely as the following coupled equations
for v(y) and n(y):

(−iω + iαU )

(
d2v

dy2
− α2v

)
− iα

d2U

dy2
v − α2 1

Re

(
d2N

dy2
+ α2N

)

+ 2α2 1

Re

d

dy

(
N

dv

dy

)
− 1

Re

d2

dy2

(
N

d2v

dy2

)
+ iα

1

Re

(
d2

dy2
+ α2

)(
n
dU

dy

)
= 0, (2.5)

(−iω + iαU )n + v
dN

dy
− 1

Pe

(
d2n

dy2
− α2n

)
= 0, (2.6)

with the boundary conditions v = dv/dy = n = 0 at y = 0 and y = 1 + d . The
velocity perturbation u is then given by the continuity equation iαu+dv/dy = 0. The
classical Orr–Sommerfeld equation is recovered for N constant and n = 0.

A second-order-accurate finite-difference discretization is used. Discretization
points are more tightly spaced in the interface region: for instance 165 grid points
within the transition layer compared to 400 points in the whole channel. The
eigenvalue problem for the resulting linear system of algebraic equations is solved
numerically for a real α and complex ω = ωr + iωi . The results were verified by
repeating the computation for different discretization steps and found repeatable
within graphical accuracy except for a region of very small diffusivity or very small
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thickness of the mixing layer where the true solution or its derivatives become
discontinuous and the precision of the discretization is degraded. The difference
between the growth rate found for 1000 grid points and that found for 2000 grid
points is typically less than 10−5.

2.3. The limit of infinite Péclet number

The limit of infinite Péclet number (D = 0) and finite Re is particularly interesting
because in this limit the base flow does not diffuse at all and the assumption of an
arbitrary viscosity profile being steady becomes exact. However, there is a singularity
for (2.5)–(2.6), as the order of the equations becomes reduced in this limit, which
requires special treatment for a numerical solution to be found. That the system of
(2.5)–(2.6) may lead, for Pe = ∞, to a singular solution can be seen by extracting v

from (2.6), in the form

v = (dN/dy)−1i(ω − αU )n

and inserting it into (2.5). Once this is done, (ω − αU ) appears in the coefficient of
the highest (fourth) derivative, meaning that the solution may become singular at a
position where this coefficient is zero. It should be noted by contrast that, if a similar
substitution is performed for finite Péclet number, the highest derivative in the single
resulting equation is the sixth, and its coefficient never becomes zero.

This behaviour is quite analogous to the infinite-Reynolds-number limit of the
classical Orr–Sommerfeld equation governing the stability of a homogeneous fluid.
Whereas for finite Reynolds number the highest (fourth) derivative has a constant
non-zero coefficient, for infinite Reynolds number the highest (second) derivative in
the resulting Rayleigh equation is multiplied by (ω − αU ). Although no singularity
is thus introduced for general complex ω, the eigenfunction for the particularly
interesting neutral case where the function ω(α) crosses the real axis is characterized
by a logarithmic singularity at the so-called critical layer, i.e. the value of y where
U (y) = ω/α. From a numerical viewpoint, this circumstance makes the neutral point
difficult to find.

A classical remedy in the context of the Rayleigh equation is to analytically continue
the solution to a suitable path in complex y. In fact, by so doing the value of ω

where ω/α crosses the curve U = U (y) (supposedly a known analytical function)
becomes complex, and the eigenfunction with ω real no longer entails a singularity.
In other words, the solution at the neutral point is now computed along a complex
path which turns around and stays away from its singularity located on the real
axis, and along which it can be numerically discretized without any difficulty. From
a programming viewpoint, doing this requires little more than declaring complex a
number of variables that were real before, and assigning a suitable discrete path in
the complex-y plane. The infinite-Pe results that will be presented below are obtained
by this technique, with the use of a parabolic path connecting the two real positions
of the channel’s end walls. Of course, the numerical solutions have been verified to be
independent of the actual path chosen, and to be identical (to within discretization
error) with their real-y counterpart when ω is complex or Pe is finite.

3. Instability results
3.1. Instability properties

In this section, we investigate the effect of diffusion, through the Péclet number Pe,
and of the interface thickness δ on the instability characteristics: the growth rate ωi
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Figure 2. Evolution with the wavenumber α of (a) the growth rate ωi and (b) the phase
velocity c for Pe = 100, 400, 5000 and ∞, and for δ = 0.1 (Re = 0.25,m = 0.25 and d = 4).
The evolution for the discontinuous case (Pe = ∞, δ = 0) is also drawn (dashed line).

and the phase velocity relative to the midpoint of the mixing layer, c = ωr/α − 1.
Unless otherwise stated, the other parameters are fixed at the values Re = 0.25,
m = 0.25 and d = 4, for which the discontinuous two-layer Couette flow is known to
be unstable (Albert & Charru 2000). The evolution of ωi and c with α is presented
in figure 2 for δ = 0.1 and Pe = 100, 400, 5000 and ∞, showing that the interfacial
mode of instability still exists in the presence of diffusion and of a blurred interface.
Of particular interest is the fact that only a band of wavenumbers is unstable:
small as well as large wavenumbers are found to be stable. This is at variance with
the discontinuous case (Pe = ∞, δ = 0), which is unstable for all wavenumbers, as
shown on the same figure (dashed line). The curve ωi(α) has a sharper peak and its
maximum is shifted towards lower wavenumbers. For some Pe values, wavenumbers
α � 0.5 have a larger growth rate than in the discontinuous case. In the absence of
diffusion (D = 0, Pe = ∞) but for a blurred interface (δ �= 0), stability of small and
large wavenumbers is also observed, like in Wilson & Rallison (1999). Results for
Pe = 106 (computed along a real path) are indistinguishable from those for Pe = ∞
(computed along a complex path) within graphical accuracy. Figure 2(b) shows for
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Figure 3. Evolution with the wavenumber α of the growth rate ωi for several values of δ
and for Pe= 5000 (Re= 0.25, m= 0.25 and d = 4). The evolution for the discontinuous case
(Pe= ∞, δ =0) is also drawn (dashed line).

Pe = 100, 400 and 5000 a monotonic decrease of phase velocity c with wavenumber
α, also at variance with the discontinuous case and the case Pe = ∞ where it increases
before decreasing. When Pe decreases, c increases, as confirmed later in this paper.

The instability features are also strongly dependent on the interface thickness δ.
Figure 3 shows the evolution of the growth rate ωi with wavenumber α, for several
values of the interface thickness δ and for Pe = 5000. The growth rate and the
band of unstable wavenumbers are seen to increase as δ decreases. For δ � 0.01,
the curves nearly superpose, eventually corresponding to the extreme case δ = 0. The
evolution corresponding to the discontinuous case (Pe= ∞, δ = 0) is also drawn for
comparison. Noteworthy is the fact that a larger growth rate is obtained for Pe= 5000
and δ � 0.1 than for the discontinuous case. A comparison between the modulus
of the eigenfunction component u for the discontinuous case and for Pe= 105 is
presented in figure 4. The eigenfunction for the discontinuous case is obtained for the
wavenumber α = 10−3 using the analytical expansion at small wavenumbers given by
Yih (1967). For Pe= 105, the eigenfunctions plotted also correspond to α = 10−3 and
to interface thicknesses δ = 0.005 and δ = 0.1, as indicated in the figure.

3.2. Order-of-magnitude considerations

A tentative explanation of the effect of the Péclet number Pe on the flow stability at
small and large wavenumbers can be obtained, following Hinch (1984), by comparing
the diffusion time τD of the disturbance and the characteristic time for the inertial
instability τI = 1/ωi . The condition for instability is that there be little diffusion
over a wavelength before the instability has grown , i.e. τD > τI . The time τI can
be estimated by its value for the discontinuous case. For large wavenumbers, and
provided δ � 1/α, τI and τD are (Hinch 1984)

τI =
α2ν1

Ui
2

and τD =
h2

1

α2D
(3.1)
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Figure 4. Comparison for α = 10−3 of the modulus of the eigenfunction component u for
the discontinuous case (dash-dot line); for Pe = 105, δ = 0.005 (solid line) and for Pe = 105,
δ = 0.1 (dashed line) (Re = 0.25, m = 0.25 and d = 4).

so that the condition is
Re Pe

α4
> 1. (3.2)

Thus, when Pe increases, the higher wavenumber that satisfies the condition also
increases. For given large α and small Re, the Péclet number Pe has to be very large
to have instability; equivalently, the smaller Pe is, the bigger Re must be. For Pe= 400
and Re = 0.25, condition (3.2) for instability is only fulfilled for α < 3.2, which is
consistent with figure 2.

At large wavelengths (α � 1), Re = O(1), d � 1, and provided δ � 1, τI for the
two-layer flow is (Charru & Hinch 2000)

τI =
60 m2

(1 − m) α2 d2 Re

h1

U1

. (3.3)

With diffusion, the instability condition τD > τI then gives

(1 − m)

m2

Re Pe α2 d2

60
> 1 for τD =

h2
1

D
. (3.4)

Again, the product Re Pe must be sufficiently large for an instability to be observed
at small α. In the present case of small Re, this means that the diffusion must be
weak enough. When Pe decreases, the smaller wavenumber that satisfies this condition
increases. For Pe= 400 and Re= 0.25, condition (3.4) for instability requires α > 0.055,
which is consistent with figure 2.

3.3. Interface thickness and diffusion effects

The effect of diffusion and thickness of the interface on the range of unstable
wavenumbers is now investigated numerically. Figure 5 presents the neutral curve
in the plane α–Pe for several values of the interface thickness δ. The region inside
each curve corresponds to the unstable wavenumbers for the indicated value of
δ. For each value of δ, no wavenumber is unstable for Pe smaller than a critical
value Pec(δ) (for example, Pec = 68 for δ = 0.005). When δ increases, Pec increases.
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Figure 5. Neutral curve in the plane α–Pe for several values of the interface thickness δ
(Re = 0.25, m = 0.25 and d = 4). Note that for δ = 0.15 (dashed curve) there is a range of
stable wavenumbers inside the range of unstable wavenumbers.

The associated critical wavenumber weakly depends on δ: αc � 0.5. For δ = 0.15
(dashed line), a region of stable wavenumbers exists at large Pe inside the band
of unstable wavenumbers. When δ increases further, the two stable domains merge
and the unstable domain shrinks, eventually becoming just a small island. Thus, for
large δ, an instability is obtained only in a definite range of Pe. For δ = 0.005,
the largest unstable wavenumber, denoted αL, increases with Pe, as expected from
§ 3.2, but not as Pe1/4 (equation (3.2)). For 0.05 � δ � 0.175, αL is nearly constant
at large values of Pe (Pe > 104) and seems therefore to be selected by δ and not
by Pe. Similarly, as expected from § 3.2, the smallest unstable wavenumber, say αS ,
decreases with Pe but not as proposed by equation (3.4). The order of magnitude
considerations of § 3.2 thus provide the qualitative tendencies of the evolution of the
bounding unstable wavenumbers with Pe but not the correct scalings. The estimate
of the effect of diffusion through a diffusion time only is probably oversimplified as
the phase velocity is also affected.

The range of unstable wavenumbers also depends on the interface thickness δ, as
illustrated in figure 6 which presents the neutral curve in the α–δ plane for several
values of Pe. The region inside each curve corresponds to the unstable wavenumbers
for the indicated value of Pe. As δ increases, the range of unstable wavenumbers
shrinks. Wilson & Rallison (1999) also found that for a blurred concentration profile
and in the absence of diffusion (Pe = ∞), small and large wavenumbers are stable,
the range of unstable wavenumbers reducing as the thickness of the blurred interface
increases. For Pe < 1250, the curves are of similar shape and for 0.005 � δ � 0.03, αL

and αS vary only slightly with δ, which means that the cut-off of the range of unstable
wavenumbers is mainly determined by Pe for these Pe and δ values. The curve for
Pe = 5000 is much broader and the effect of δ on αL and αS is more important. Note
that for Pe = 1250, instability exists for larger values of δ.

3.4. Most amplified mode

For given Pe, δ, Re, m and d , the growth rate ωi is only a function of the wavenumber
α. We shall denote its maximal value as ωi,max, the corresponding wavenumber αmax
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corresponds to the maximal value of the growth rate for the discontinuous two-layer flow
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and phase velocity cmax. The effect of the Péclet number on this most amplified
mode is now explored, the other parameters being kept fixed. Figure 7 displays the
evolution of ωi,max as a function of Pe for several values of δ. The value ωi,max = 0.12
corresponding to the discontinuous two-layer flow (Pe= ∞, δ = 0) is also drawn. For
large Pe (Pe � 105), ωi,max depends only on δ for δ > 0.1, with a value lower than
in the discontinuous case. Whatever the interface thickness δ, decreasing Pe then
has the rather unexpected effect of increasing the growth rate of the instability. The
growth rate ωi,max reaches a maximum for a particular value of Pe, which may be
considered as an optimal diffusion for destabilizing the flow. This optimal value of
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Figure 8. Evolution with Pe of (a) the phase velocity cmax associated with ωi,max and (b)
the wavenumber αmax for several values of the interface thickness δ (Re = 0.25, m = 0.25
and d = 4). For the discontinuous two-layer flow, αmax = 1.5 and cmax =0.16 associated with
ωi,max = 0.12.

Pe increases only slightly when δ decreases for δ � 0.05 (between Pe= 1250 and
Pe= 2500). Of particular interest is the fact that the maximal growth rates obtained
in the presence of diffusion for δ � 0.1 are higher than in the discontinuous case.
When Pe is decreased further, the growth rate ωi,max decreases, eventually becoming
negative. For the smallest values of Pe, ωi,max decreases nearly linearly with δ. Figure 8
presents the evolution with Pe of the associated phase velocity cmax and wavenumber
αmax for several values of δ. When Pe increases, the phase velocity cmax decreases, by
a factor of 2 for the larger δ and of 4 for the smaller δ, before becoming constant
for Pe> 5000 and δ � 0.1. For the smaller Pe, cmax does not depend strongly on δ

(less than 10%) but for Pe � 105, it grows by a factor of 3. Like ωi,max and cmax, the
wavenumber αmax depends on δ only and not on Pe, for Pe � 5000 and δ � 0.1. For
Pe � 103, αmax also depends almost linearly on δ, the slope increasing with Pe.

All the results presented up to now have been obtained for fixed values of the
parameters m, d and Re, chosen such that an instability exists in the discontinuous
case. The fact that for some Pe and δ the maximal growth rate is larger than for
the two-layer flow allows us to expect that a stable discontinuous configuration may
now also become unstable in the presence of diffusion and a blurred interface. This is
indeed found to be the case. The results of Albert & Charru (2000) indicate that the
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Figure 9. Isovalues of the maximum growth rate ωi,max in the Pe–δ plane (Re= 0.25, m= 0.25
and d = 4): bold line: ωi,max = 0; dashed lines: ωi,max = 0.05, 0.1, 0.15 and 0.2. The curves
labelled 1, 10 and 100 indicate the domain of the parameters where ωi,max is respectively 1, 10
and 100 times larger than Pe−1δ−2.

discontinuous case d = 4, m = 2 is stable for α = 0.1 and 1 and unstable for α = 3
and 10. In our configuration, calculations performed for d = 4, m = 2 and Re =0.25
have shown that wavenumbers α � 1 are unstable for 104 <Pe< 105 and δ = 0.02,
with growth rate ωi � 10−2 and phase velocity c �−0.1. Note that this negative phase
velocity is consistent with the result of Albert & Charru (2000) that waves move with
the less viscous fluid.

3.5. Base-flow diffusion

Attention is now focused on the domain of existence of the instability in the Pe–δ

plane. Isocontours of the maximal growth rate ωi,max in the Pe–δ plane are shown in
figure 9 for Re = 0.25, m =0.25 and d = 4. The marginal linear stability curve is given
by the contour ωi,max = 0. The region on the right of this curve corresponds to stable
flow conditions. In the region on the left of the curve, at least one wavenumber is
unstable, showing that the two-layer Couette flow with continuous variation of the
viscosity exhibits instability provided the thickness of the mixing layer is small enough
and the Péclet number Pe sufficiently large. Note that, for the largest thicknesses
0.25 � δ � 0.276, Pe must also not be too large for an instability to arise. Thus, for
large interface thickness δ, only a range of Pe values provides an instability. There
is also a particular value of Pe which destabilizes the largest interface thickness
(Pe =1250 for δ =0.276), which may be considered an optimal diffusion as discussed
in the preceding section. Conversely, small interface thicknesses withstand a larger
diffusion (smaller Pe). We found that the lower-branch values vary linearly with δ−1.
A notable feature of figure 9 is that the isovalue curves of ωi,max are similar in shape,
the largest growth rates being found for smaller values of δ, as already observed in
figure 3.

As noted in § 2, we have neglected the diffusion of the base flow in our stability
calculations. By physical reasoning, we may expect this approximation to become
invalid if the diffusion of the base flow is faster than the growth of the normal modes.
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Figure 10. Marginal linear stability curves ωi,max = 0 in the Pe–δ plane for different viscosity
ratios, the Reynolds number of the thicker and less viscous layer being kept fixed Re2 = 4 and
d = 4.

That is, this approximation may be expected to be inappropriate if the diffusion time
scale of the base flow τdiff = δ2/D is smaller than the characteristic time for instability
τI = 1/ωi . In non-dimensional form, for an instability to be observed we thus require
that ωi � Pe−1δ−2. The curves where ωi,max is equal to 1, 10 and 100 times Pe−1δ−2,
drawn in figure 9, give an indication of how much smaller the diffusion of the base
flow can be expected to be than the instability growth. We note that, since δ increases
when base-flow diffusion prevails, the region on the left of each limiting curve may
also be included in the corresponding instability domain, as instability will eventually
prevail after diffusion makes δ large enough. It should also be noted, however, that
base-flow diffusion completely rules out the case of zero Péclet number considered by
Ranganathan & Govindarajan (2001).

3.6. Some comments on the effect of other parameters

The influence of the other parameters of the problem, m = µ2/µ1, d = h2/h1 and
Re, has been thoroughly investigated in the discontinuous case (Albert & Charru
2000). In particular, the growth rate was found to be proportional to both Reynolds
number and viscosity difference (and therefore zero when viscosities are equal). In
this paper, we concentrated our attention on the influence of Pe and δ; the effect
of other parameters can be expected to be qualitatively similar to the discontinuous
case. This is illustrated in figure 10 where the neutral curve in the Pe–δ plane is
plotted for three values of the viscosity ratio m and for the parameters Re2 = 4
and d = 4, Re2 being the Reynolds number of the thicker and less viscous layer.
This figure indeed shows that increasing m reduces the instability domain. Now,
however, the flow becomes unstable for m < 0.85 instead of 1 (Albert & Charru
2000). Similarly, the region where ωi,max � Pe−1δ−2 is also considerably extended
by decreasing the viscosity ratio m, as the growth rate becomes larger. Increasing
Re has a similar effect on this region. The effect of the Reynolds number on the
growth rate ωi has also been explored in the range 0.001 � Re � 1000, for four given
wavenumbers (α = 0.5, 1, 1.5 and 2) and the combinations of three values of Pe
(100, 400, 5000) and three values of δ (0.05, 0.1, 0.15); the following trends were
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Figure 11. Marginal linear stability curve ωi = 0 in the plane α–Re for Pe= 104, δ = 0.1,
m= 0.25 and d =4.

observed. In most cases, the instability only sets in above a critical Reynolds number
Rec1(α, δ, Pe), at variance with the discontinuous case. When Re exceeds a second
critical value Rec2(α, δ, Pe), the instability disappears, in agreement with the fact
that, for the discontinuous case wavenumbers of order 1 stabilize when Re increases
(Albert & Charru 2000). Decreasing Pe or increasing δ was found to increase the value
of Rec1. For the restabilization when Re increases, a decrease of Pe was observed to
preserve the instability and therefore increase Rec2, whereas increasing δ was found to
stabilize the flow (Rec2 decreases). Figure 11 shows a typical example of the marginal
linear stability curve in the plane α–Re for Pe = 104, δ = 0.1, m = 0.25 and d = 4. The
lower boundary of unstable wavenumbers, αS < 0.015, is indistinguishable from the
Re-axis. For Re > 6.6, wavenumbers α � 0.4 are stable, whereas small wavenumbers
remain unstable.

Finally, we have tested the sensitivity of the growth rate to the precise shape of
the viscosity profile by trying laws other than the hyperbolic one. Calculations have
been performed for a cosine viscosity distribution, matching the values of µ1 and µ2

as follows:

µB(y) = µi + �µ sin

(
2

δ

(
y
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− 1

))
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(
1 − 1

4
πδ
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(
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)

as well as a piecewise linear viscosity distribution:

µB(y) = µi + �µ
2

δ
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)
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2
δ
)
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(
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2
δ
)
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These profiles, just like the profile given by equation (2.1), have been defined to have
the same slope at the midpoint of the interface, y/h1 = 1. As shown on figure 12, the
results of the calculations exhibit relatively small differences, in the range of what can
be expected from the effective thickness of the region of rapid change of viscosity in
the three profiles. Differences for the phase velocity are less than 10%. Our results are
thus only weakly dependent on the specific viscosity distribution chosen to describe
the transition layer.
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Figure 12. Evolution with the wavenumber α of the growth rate ωi for three different base
viscosity distributions describing the rapid change from one layer to the other: the hyperbolic
tangent profile studied in this paper and a linear and a cosine distribution (for δ = 0.1,
Pe = 5000 and Pe = 106; and for Re = 0.25,m = 0.25, d = 4).

4. Conclusion
The linear stability of the continuous analogue to the two-layer Couette shear flow

has been studied by considering a hyperbolic-tangent distribution of the base-flow
viscosity. The analysis required us to account for the coupling between viscosity
and velocity perturbations and for the effects of diffusion, i.e. of the Péclet number
Pe, and of the interface thickness δ. Results show that instability still exists in the
presence of diffusion and of a blurred interface, provided the thickness of the mixing
layer δ is not too large and Pe is not too small. For the larger interface thicknesses
(0.25 � δ � 0.276 for Re= 0.25, d =4 and m =0.25), only a range of Péclet numbers
Pe allows instability (roughly 400 � Pe � 104). When Pe decreases (70 <Pe< 400), the
largest interface thickness δc allowing instability decreases. This regime occurs for a
wavenumber α � 0.5. However for these flow conditions, an instability is unlikely to
be encountered in practice as the base flow may diffuse faster than the instability
grows. Larger growth rates are found for smaller δ and larger Pe values, and are
associated with larger wavenumbers (α � 1) and smaller phase velocities. The various
instability regimes are more clearly seen when Pe and δ are varied independently. For
the smaller unstable Pe, the maximal growth rate ωi,max varies linearly with Pe and δ.
The phase velocity cmax was shown to depend strongly on Pe whatever δ. For larger
Pe values (Pe> 2 × 104), on the contrary, ωi,max, αmax and cmax depend more strongly
on δ than on Pe and eventually only on δ for δ > 0.1. Between these two regimes, there
is an optimal Pe value giving a maximal growth rate roughly independent of δ. Of
particular interest is the fact that the growth rate is larger than the growth rate for the
discontinuous case for a range of Pe and δ. Owing to this effect, a stable discontinuous
configuration could be destabilized by diffusion. Calculations have indeed shown that
some wavenumbers which are stable in a discontinuous case are destabilized in our
configuration for a range of Pe and δ values. The domain of existence of the interfacial
instability in the presence of diffusion and a thick interface is therefore modified in the
plane of the parameters m and d with respect to the discontinuous configuration. One
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of the most prominent features of this instability is however the fact that only a band
of wavenumbers is unstable whatever Pe or δ, whereas long and short wavelengths
are found to be stable. This is at variance with the discontinuous configuration, which
is known to be unstable for all wavenumbers. The band of unstable wavenumbers
reduces as δ increases, but the behaviour with Pe is more complex, depending on the
value of δ. It appears that, although order-of-magnitude considerations may explain
the stability of large and small wavenumbers in the presence of diffusion, the smallest
and largest unstable wavenumbers are strongly dependent on δ, for large Pe.

Thus, the presence of diffusion and of a blurred interface does not cancel the
interfacial mode of instability, known to exist at the interface between two superposed
fluids subjected to shear, but in some cases even enhances it. Our results therefore
support the possibility that this instability could be a good candidate to explain the
experimental observations on miscible fluids and resuspension flows mentioned in the
Introduction. In our case, however, the domain of existence of this instability depends
strongly on the governing parameters and the range of unstable wavenumbers is found
to be reduced. At this stage, the level of agreement with the available experiments is
difficult to assess. From the pictures presented by Scoffoni et al. (2001), it seems that
their instability has a wavelength much larger than both the viscous-film thickness
and the finger size. The density contrast between their fluids ranges from 0.05% to
11% and the viscosity ratio is 10< m < 400. The Péclet number is large, Pe ∼ 105–106.
In the case of resuspension flows, Schaflinger et al. (1995) reported that the observed
waves have a wavelength comparable to the total spacing of the duct, which is twice
the height of the suspension layer. A weak-amplitude wave of wavelength about
twenty times the total spacing was also observed. From their theoretical base flow
profile, one might guess a thickness of their interface smaller than 0.05. In both cases,
a quantitative comparison could only be performed if measurements were available
of the base velocity and viscosity profiles as well as of the interface thickness, in
order to perform our stability calculations for the appropriate base-flow distribution,
viscosity–concentration relationship and governing parameters.
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